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Conductance of quantum waveguides with a rough boundary 

Y Bkagaki and D K Ferry 
Center for Salid State Electronics Research, Arizona SIate University, Empe,  AZ 85287- 
6206. USA 

h i v e d  6 August 1992 

AbslraeL A quanlum mechanical alculation of the mnductance of quantum wires in 
the praence of boundary Yattering is presented. ?he scattering-matrix method is used 
to evaluate the Lransmission coemcienrs through elecvon waveguides with a random 
fluctuation in the local width of the rhanncl. ?he conductance quantization of ballistic 
wires breaks d w  for slmng disorder. We find that the mndunanoe has a dip when a 
new propagating made opens. ?he mnduclanee is suppresed exponentially as the lenglh 
of the wire is increased, demonstraling localization of electron states in the quasi-one- 
dimensional aystem. ?he dependences of the localization length on the parameters of 
the wires are examined. The probability distribution of the mnductance due la mherenl 
scattering from the mugh boundary is found la p ~ ~ ~ e s s  a long tail. 

1. Introduction 

Low-temperature transport properties of an electron in low-dimensional systems have 
attracted much attention in recent years [l]. In the Drude model, an electron is 
assumed to move along a classical trajectory between independent scattering events. 
The probability of the electron undergoing collisions with scatterers is evaluated by 
taking an average Over disorder, i.e., it depends on the density of impurities. This is 
no longer valid, however, if interference of scattering from different impurities is not 
negligible. The interference between the various Feynman trajectories gives rise to 
a variety of quantum interference phenomena [2]. If the sample dimensions are less 
than the phase coherence length of an electron, the conductance is no longer a self- 
averaged quantity and possesses a fluctuation with the universal amplitude - e z / h  
among different @ut macroscopically the same) samples (31. In this regime, the 
conductance depends critically on the specific impurity configuration in the sample 

In narrow channels created in a high-mobility two-dimensional electron gas 
(ZDEG), electrons can transit the entire device without being scattered by their parent 
donors. We may expect that the Scattering from an inhomogeneous boundary plays a 
fundamental part in the transport properties in the nearly perfect conductors. The size 
effects have been extensively studied in metal films. The resistivity increases rapidly 
as the film thickness is reduced below the elastic mean free path 1, [4]. Similar 
effects are expected in the wires. It is important to note that the Fermi wavelength 
A, of electrons in semiconductors is much larger than that in metals, and hence only 
a small number of modes are occupied below the Fermi energy, and the discrete 
energy-level spectrum needs to be taken explicitly into account [SI. The resistivity of 
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the one-dimensional (1D) semiconductor systems would be an interesting subject since 
a high-mobility effect, on the other hand, has been predicted because of suppression 
of impurity scattering [6]. There are several nanofabrication technologies to realize 
narrow Gab-AlGaAs wires, where a variety of ballistic transport phenomena have 
been observed [l]. However, the experiment to investigate the size effects in the 
GaAs-AlGaAs wires is not easy. Under the present technology, the confinement 
potential is usually imposed by depletion methods utilizing such techniques as split- 
gate [7l, shallow etching [8] and focused-ion-beam implantation [9]. In these devices, 
the edge potential b nearly parabolic [IO] rather than a hard-wall confinement created 
by the conduction band discontinuity. Therefore, it is considerably difficult to estimate 
the precise conduction width [ll]. The methods utilizing selective crystal growth 
techniques [12] can provide the accurate channel width. Unfortunately, the quality of 
the grown material is not yet sufficient to observe the ballistic effects. 

The effect of the rough boundary in the GaAs-AIGaAs wires was lirst reported 
by Thornton a a1 [13]. They have investigated low-field positive magnetoresistance 
phenomena and found that, even though the channel boundary is predominantly 
specular [14], a small amount of non-specular boundary reflection gives rise to a peak 
at a field value which results in the cyclotron diameter being comparable with the 
channel width and hence causes electrons to collide frequently with the boundary 
[13, U]. This mechanism k based on the classical scattering from the boundary. 
Our interest is raised to the effects of coherent boundary scattering. Quantum 
interference of an electron wave scattered from the non-uniform boundary will lead 
to the localization of electron states (161. 

The purpose of this paper is to present results of.numerical simulation of the 
quantum transport through narrow wires in the presence of the boundary roughness 
scattering. The non-uniform quantum waveguide is decomposed into uniform 
waveguide sections. A mode-matching is then made aeross the boundary between 
the sections. The transmission coefficients are obtained by cascading matrices which 
characterize each junction. We utilize the scattering matrix method to evaluate the 
overall transmission. This method was used by Cahay a a1 [17,18] to study the 
conductance of disordered systems, where a large number of impurities are embedded 
in the sample. 

2. Numerical model 

Consider an infinite strip containing a finite scattering region. We model the boundary 
fluctuation in the scattering region as illustrated in figure 1. An electron waveguide 
with a non-uniform width defined by y2(z)-y1(z) is terminated by perfect leads with 
uniform width W .  The wire structure is divided lengthwise into a few sections. An 
equivalent length d is assigned for all waveguide sections. The width in each section 
is assumed to be uniform. In real devices, y I ( z )  and y2(z) are smooth functions of 
the coordinate. The randomness in y l (r )  and y2(z) is conventionally assumed to 
be Gaussian for analytical treatment. Our model can simulate the arbitrary boundary 
contour if d is chosen sufficiently small compared to A,. However, we make the 
following assumption, for simplicity. We introduce a deviation in the local width Of 
the wire from an average W by putting y1 = w1 and y2 = W + w2, where w1 and 
w2 are distributed uniformly between -A/2  and A/2. Therefore, the deviations 
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Figure Schematic new of an electron waveguide 

r=ld X=(l+l )d  waveguide section with length d ,  lhe width is 

-b(l)j(1+1)i 
Yi” I with an inhomogeneous boundary. In  each 

assumed to be uniform. 

If d A,, the fluctuation resembles ’white noise’. This may be plausible in 
metal wires (and GaAs-AIGaAs wires created by means of crystal growth), where 
the roughness corresponds to physical absence of atoms at the surface (interface 
between GaAs and NGaAs). In contrast, in GaAs-NGaAs wires utilizing the split- 
gate techniques, the inhomogeneity of the channel width may arise from the random 
distribution of donors (191. The correlation length of such roughness is expected to 
be larger than A, since the source of the roughness is several tens nanometen away 
from ZDEG layer. 

3. Scattering-matrix approach 

In this section, we describe the numerical technique, which is based on the mode- 
matching method and the scattering matrix method, to evaluate the transmission 
coefficients through the inhomogeneous wire. 

The wavefunction in the Ith waveguide section ( ( 1  - l ) d  < I < Id, yi’) < y < 
y$”] is given in terms of the modal expansion 

M 
@(z, y) = E( $I))- 112 [ a j  (‘1 exp(ikj”(z-(l-l)d))+bj ( 1 )  e ~ p ( - i ~ ~ ) ( z - l d ) ) ] ~ ~ ) ( y ) .  

j 

(2) 
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Assuming hard-wall confinement in the transverse direction, the orthonormalized 
functions in the y direction uj(y) and the longitudinal wavenumbers k, are given 
by, respectively 

Y Takagaki and D K Feny 

uy)(y) = d m s i n [ [ j r / ( y F ) -  yi'))l(y - gl'))] 

kc') J = J[2mEp/iiZ - [jn/(y$') - yi'))]2] 

(3) 

(4) 

where Ep = ii2k$/2m is the Fermi energy of electrons. The value M is a practical 
cut-off. It IS important in the quantum mechanical calculation to include evanescent 
modes, for which kj are imaginary, since the coupling thraugh the evanescent modes 
is not negligible [ZO]. 

For each junction between adjacent waveguide sections, a scattering matrix is 
determined which relates the amplitudes of the incoming and outgoing states. We 
define the scattering matrices S f  associated with the junction at 2 = Id as [21] 

where di )  and b(') are column Ectors representing the amplitude of modes. The 
M x M matrices t, r', r, and t' describe mode-mixing properties across the junction. 
The exact analytical form of the scattering matrix is derived in the appendix. These 
matrices are cascaded to yield the overall scattering matrix for the entire structure 
11 

s = S O @ S I @  s,. . . . (6) 
The reason that we use the scattering matrix method is its numerical stability. 

For comparison, the transfer matrix method is one of the most convenient ways 
to evaluate the transmission coefficients through composite systems because of its 
simplicity. However, it is numerically unstable when dealing with structures large 
compared to the de Broglie wavelength. In the transfer matrix, the amplitudes of 
modes in the right-hand side are evaluated relative to those in the left-hand side. If 
we include evanescent modes, the amplitudes, on one hand, decrease exponentially 
for right-moving evanescent modes. On the other hand, they increase exponentially 
for the left-moving evanescent modes. Therefore, the transfer matrix methods are not 
applicable to a problem in which the scattering region is several orders of magnitude 
longer than the wavelength. In the scattering matrix, however, the amplitudes of 
outgoing modes are evaluated relative to those of incoming modes. The amplitudes 
always decrease after the mode-matching procedure and hence the contributions from 
higher-lying evanescent modes eventually disappear in the overall scattering matrix. 

The conductance of the sample is given from the overall scattering matrix through 
the Landauer formula [22]. There are several versions of the conductance formula 
depending on the geometry of the leads. We use the multichannel version of the 
two-terminal Landauer formula in which the phase coherence is constrained to the 
wire length: 

G = ( Z e 2 / h )  Tr[ttt]. (7) 

Here the trace is defined to operate only over the propagating modes. It has been 
found that the In JtI2 is an appropriate scaling variable in the localized regime [U]. 
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A Results and discussion 

In this section we present the numerical results, which consist of two parts: (i) the 
energy dependence of the conductance in order to study the effects of the boundary 
scattering on the conductance quantization and (ii) the length dependence of the 
conductance in order m study localization effects in quasi-ID system. We take 
M = 50 modes into account in the calculation. It is possible to include more 
modes in the simulation. However, contributions from the higher-lying evanescent 
modes are negligible when a sufficient number of lower-lying modes are taken into 
account [20]. 

Figure 2 shows the energy dependence of the conductance of an LJW = 7 wire 
in the presence of the 'white noise' type ( d / W  = 0.1) boundary roughness. For 
A = 0 (perfect wire), the conductance is quantized in units of 2e2/h in steplike 
fashion and each step corresponds to the opening of a new conducting mode [7]. 
The number of propagating modes in the perfect leads is given as a truncation to 
an integer N = [ k F W / ~ ] .  The impurity scattering in the channel has been found 
to obscure the quantization [24,25]. The calculated conductance indicates that the 
quantization can be destroyed by the boundary roughness scattering. The plateau 
structures are essentially intact for lower energy. The electron states are localized 
near the propagation thresholds of modes and hence the step structure is shifted to 
higher energies and is rounded. The universal conductance fluctuations ( u a )  [3] 
are developed when the Fermi energy is increased. The breakdown of the quantized 
conductance for higher energy is significant if A/W is held constant compared to the 
case of fixed A/A,. This is because of larger inter-mode coupling for larger A/A,. 
We find that dips appear near the thresholds of the subbands. The longitudinal 
momentum of the barely opened mode is small, so that scattering from all other 
modes to the localized mode is enhanced [24]. This feature has been observed in 
the presence of attractive impurities in the wire and is ascribed to the transmission 
resonances through quasi-bound states [20,25]. From the results for strong disorder 
we find that the conductance saturates at higher energies. The conductance due to 
randomness has been derived by Pichard [26]: 

' 

2 
cosh(2L/Ei) + 1 

N 
- - G g=- 

2e2/h i = l  

where t i  is the decay length of the ith wavefunction and converges towards 
localization length in the limit L -, 00. The values of l/ci of the disordered system 
are equally spaced and are roughly given by l/ci - i /NZe due to level repulsion 
1271. For L > Z,, only active transmission channels, the number of which is roughly 
given by Ne, - NZ,/L, contribute to the conduction [27]. Therefore, the opening of 
new channels is no longer reflected in the conductance g - Nee. 

Figure 3 shows the length dependence of the conductance for a specific realization 
of the boundary roughness. One can see that the reflection of electrons from the 
rough surface is rapidly enhanced as L is increased. When the wire length becomes 
longer than the elastic mean free path, the UCF are fully developed and dominate 
the behaviour of the conductance. The fluctuation is not self-averaging, i.e., it does 
not disappear even if L is further increased. The fluctuations are extremely sensitive 
to the disorder and the energy. A small change in the boundary roughness or the 
energy induces a drastic modification of the fluctuation pattern. This indicates that the 
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0- 
1 2 3 4 5 6 7  

r w f i  
Figure 2. Energy dependence of the mnductance of L f W  = 7 wins The strength of 
the boundary roughness is assumed to be A f W  = 0.1 or A/Ap = 0.1. The dotted lines 
represent the conductance of a perfect wire. The upper culyes are offset by 2 Y 2 e 2 / h .  

a 
0 500 1000 1500 

Length (units of h,) 

Figure 3. Conduaance of inhomogeneous wires as a function of the wire length for 
k p W / r r  = 2.7, 3.7, and 4.7. Ihe same realization of the boundary roughness is assumed. 

conductance fluctuation arises not from classical scattering from the rough boundary 
but from quantum mechanical phase modulation due to multiple reflections in the 
wire. 

Next, we investigate the conductance ensemble averaged over about 25 equivalent 
wire samples to eliminate the sample-dependent fluctuations. We find that the 
averaging process eliminates most of UCF and the averaged conductance decreases 
monotonically with increasing L. The conductance fluctuations are sensitive to 
the energy such that the averaging can easily be realized experimentally at finite 
temperatures if k,T is larger than h D / W L  with D being the diffusion constant of 
electrons. In figure 4, we show the length dependence of the normalized conductance 
gnom = g / N .  The solid and dotted lines represent averages in terms of (In(G)) 
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and In((G)), respectively. These averages do not make appreciable difference if the 
disorder is weak In the strongly localized regime, however, the fluctuation is so 
large that if we take the average as (G) the large conductance values dominate the 
averaging. We will return to this point later. Figures 4(a) and 4(b) show results 
for d / X ,  = 0.2 and 0.8, respectively. The scattering from the boundary becomes 
quantitatively weak as d is increased. In the limit of large d, the total transmission 
probability is expected to be quantized and will be determined by the number of 
propagating modes at the narrowest part of the wire in so far as the transmission 
resonances through quasi-bound states in the wire are not important (non-additivity 
of conductances in two-terminal point contacts in series [28]). In figure 4 the 
roughness is assumed to be A/& = 0.2, so that the scattering is weak for wide 
wires (A/X, = 0.2 corresponds to A / W  0.15, 0.11, and 0.05 for kPW/r = 2.7, 
3.7, and 7.7, respectively). The dependence of the averaged conductance (In G) on 
the number of propagating modes is shown in figure 5 for A / W  = 0.1. One can see 
in this case, on the contrary, the roughness scattering appears to be strong for large 
kFW/?r as expected from the result in figure 2. 

dlAF=0.2 
A/A,=0.2 

2.7 

o.2 t 
n " 4  
I.I I 

0 100  2 0 0  300 400 0 400 800 (200 1600 

Lenglh (units of h,) Length (units of A,) 

Figure 4 Nannaliraed average oonductance G,/ (Ze' /h)N with N being the number 
of propagating modes in Ihe perfect leads as a function of the length of the wires. (U )  

Ihe averaged mnductanee G, is olculated in terms of (h G) and In(G) for solid and 
dotted line, rerpenively. (b) If lhe wire length exceeds a critical value indicated by an 
am- the conductance decays exponentially. 

If only the lowest transverse level is filled, the conductance shows simple 
exponential dependence on L. An analytical expression for the localization due 
to boundary roughness has been examined in the one-dimensional case. It has been 
found that the average value of the conductance depends exponentially on L and all 
the moments of the conductance are non-self-averaging 1161. With increasing N, an 
increase in L appears less effective in suppressing the conductance when the wire 
is relatively short. The non-exponential behaviour of the conductance for larger N 
may be explained in terms of the multi-subband effect through (8). The numerical 
results for these wide wires suggest a presence of a critical length L ,  as indicated by 
arrom in figure 4(b). This may correspond to a length to achieve Ne, = 1 (and so 
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PIym S. Length dependence of the averaged conductance of inhomogeneous Wires 
when A l W  is held mnslant. 

Figure 6. Distribution of the mnduclance values in (0)  weakly and (b) strongly localized 
regime. 

we expect g( L = L,) - 1). If the length exceeds the critical value, the conductance 
recovers the exponential dependence governed by the ti  of the final active channel. 

Finally, we focus our attention on the statistical properties of the conductance 
fluctuations. Rgure 6 shows the distribution of G in the weakly localized regime 
((gnmm)w - 0.4) and that of log(G) in the strongly localized regime ((gmm)av - 
0.01). We futd that the distribution of the conductance possesses long tails which are 
responsible for the peculiar dependence on various averaging processes. One can see 
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Figure 7. (a) The average of the mnduclance ( 9 )  and the standard deviation 
A g  = [((g - (g))*)]'/2 are plotted as a function of the wire length. (b) The standard 
deviation of In(g) as a funnion of the wire length. The two straight lines represent the 
relations of Aln(g )  OL L and L1l2.  The averages are calculated from 25 equivalent 
samples with kp WIT = 2.7. d/Ap = 0.8, and A / A p  = 0.2. 

a Gaussian-like distribution of In C in the strong-disorder limit. The root mean square 
deviation of the mnductance is plotted in figure 7(0) as a function of the length of 
the wire. The conductance fluctuation increases rapidly as L is increased. When 
L exceeds the mean free path, we find that the fluctuation possesses the universal 
amplitude of 0.4 - 0.6ez/h [3]. The root mean square deviation of In(g) is plotted 
in figure 7(b). It has been suggested that Aln(g) in general disordered system is 
given in the limiting cases as [29] 

The numerical result shows a reasonable agreement with the analytical prediction. 
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Appendix. Scattering matrix l o r  discontinuous junctions 

In this appendix we derive the exact analytical form of the scattering matrix 
across discontinuous junctions. It is apparent that we need to treat two kinds 
of discontinuous junctions shown in figures AI@) and Al(b). The mode-mixing 
parameters are obtained by using the mcde-matching method. Let us first mnsider 
the 'wide-narrow' junction shown in figure Al(a). 'This junction often appears in 
the simulation of quantum point contacts and the solution is well known. The 
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wavefunction in each waveguide section is given by (2). Therefore, taking into a m u n t  
the orthonormal property of the eigenfunctions and the continuity condition for the 
wavefunction and the normal derivative at the junction, we get the following equations 

Y Takagaki and D K Feny 

K;'(EIal + b,) = CK;'(a2 + E+,) ( A l a )  

CTK,(E,a, - b,) = K,(a, - E,b,) 

where K i  and Ei are diagonal matrices given by 

(Ki),,,n = (k$))1'26,,,n (W 
(Ei),,,,, = exp(ik~))d)6,,. ('43) 

The matrix C, which characterizes the mode-mixing, is defined by the overlap integral 

(C),,,,, = / u%y)@(y)dy.  ('44) 

One readily obtains the scattering matrix 

t = 2(CTK:CK;' + K2)-'CTK,E, 

r' = (C~K;CK;' + K,)-](K, - c~K:cK;')E, 

r = (K;, + C K ; ~ C ~ K , ) - ~ ( C K ; ~ C ~ K ,  - K;')E, 

t' = 2(K;' + CK;2CTK,)-1CK;1E,. - (-) 

( f i n )  

( f i b )  

('w 

The scattering matrix for the 'narrow-wide' junction is obtained by repeating a similar 
procedure. 

In order to analyse the step discontinuity shown in figure Al (b ) ,  we introduce a 
fictitious wide waveguide section between the two sections as shown in figure Al(c) .  
Considering the continuity conditions at the junctions and taking the limit t + 0, one 
obtains the relations: 

CIK;'(Elal + bl) = C,K;'(a, + E&,) 

(CT)-'Kl(Ela, - b,) = (CT)-'K,(a, - E$,). 

(Ab)  

(A&) 

The matrices C, and C, are defined by the overlap integrals: 

(CA%" = / u % Y ) u w  dY @'a) 

( C 2 L  = / & ? ( Y ) ~ % Y )  dy. (A7b) 

Therefore, the scattering matrix is given by 

(A%) 

64%) 

('4%) 

(AM) 

t = 2(C,K; 2 c T  ,( CT ,) - 1  K, + C,K;l)-lCIK;lE, 

r' = (c~K;~cT(cT)-~K, + c,K;')-~(c,K;~cT(cT)-'K, - c,K;')E, 

r = (C,K; 2cT ,( CT ,) - 1  K, + C,K;')-'(CZK;ZC~(C~)-'K, - C,K;') 

t' = 2(C,K;'CT(CT)-'K, + CIK~l)-lCzK;lEz. 
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(a) 

7 
1 ; 2  

I 
(b) (4 

I I ,  Rgum Al. (a), (b) Dismntinuous junctions in 
1 j 2  I j 3 j  2 eledmn wanguides In order U, deal with the 

mode-matching BC- the junction shown m (b), 
m m m e  a Baitious waveguide section at the 

x=d r=d+e interface as shown m (c). 
I 1  j 

r=d 
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